信用贷款风控模型有哪些论文值得学习和研究
以写人反映时代新风貌,要写一个人拾金不昧、乐于助人,请摆脱陈旧的套数,要明白,时代日新月异,每天都出现新人新事,比较于自己小的时候,身边的人从各方面是不是也随着时代发生了变化,比如说竞争意识变强后,人怎么变化了。
写某个具体时期或者某个具体地点的人,在特殊时期的人,常常会表现出特殊的状态,如非典时期,你身边的人怎样表现的?在不同的社会地点,一般人们表现不同的社会角色,在家的和在办公室的爸爸一定看起来很不一样。
小贷系统风控模型是什么?
风控模型,计算最高能够承受什么样的高风险客户,同时该如何把这些资产证券化并分散点风险给投行对自己是最有利的。强大的高频交易和程序化交易要求更快速的交易通道和更高效的策略模型;另一方面,快速交易导致投资面临的风险呈指数级增长,从而市场和投资者需要更全面的策略组合和更精准的风控模型进行风险对冲。
风控模型,是风险控制模型的简称。
常见于信贷担保公司,用来对业务进行风险控制。
风控模型当下国内主要有:工商银行开发的风控模型。
在高度精细化的风险控制模型中,很重要的一个环节就是用先进的统计计量模型来更加准确的描述多种金融资产价格波动的关联性。在现实的金融交易中,我们将面对成百上千的金融资产,所以我们需要一个理论上十分灵活、现实中应用有效的统计模型能够同时对大量的风险因子的相关性进行描述、估测和模拟。在科研中,在不断探索,力图在现有的模型基础上,找到更加灵活的模型准确高效描述各高维的金融风险因子之间的相依性。当然,高度量化的数量风险模型,还要在业界实际应用中能够运算相对迅速,这样才能对各种金融组合进行实时的风险预测和监控。
这种高度量化的风控模型,将无时无刻不为交易所、清算所和各大券商经纪公司,实时计算未来各种资产组合的风险度,从而始终将各种金融交易的市场风险控制在合理的范围内,使衍生品市场交易能够稳定运行,最大可能的减少巨大价格波动给市场带来的危机。
互联网金融风控模型,需要多大的数据
1、基于某类特定目标人群、特定行业、商圈等做风控
由于针对特定人员、行业、商圈等垂直目标做深耕,较为容易建立对应的风险点及风控策略。
例如:
针对大学生的消费贷,主要针对大学生人群的特征
针对农业机具行业的融资担保。
针对批发市场商圈的信贷。
2、基于自有平台身份数据、历史交易数据、支付数据、信用数据、行为数据、黑名单/白名单等数据做风控
身份数据:实名认证信息(姓名、身份证号、手机号、银行卡、单位、职位)、行业、家庭住址、单位地址、关系圈等等。
交易数据/支付数据:例如B2C/B2B/C2C电商平台的交易数据,P2P平台的借款、投资的交易数据等。
信用数据:例如P2P平台借款、还款等行为累积形成的信用数据,电商平台根据交易行为形成的信用数据及信用分(京东白条、支付宝花呗),SNS平台的信用数据。
行为数据:例如电商的购买行为、互动行为、实名认证行为(例如类似新浪微博单位认证及好友认证)、修改资料(例如修改家庭及单位住址,通过更换频率来确认职业稳定性)。
黑名单/白名单:信用卡黑名单、账户白名单等。
3、基于第三方平台服务及数据做风控
互联网征信平台(非人行征信)、行业联盟共享数据(例如小贷联盟、P2P联盟) FICO服务
Retail Decisions(ReD)、Maxmind服务
IP地址库、代理服务器、盗卡/伪卡数据库、恶意网址库等
舆情监控及趋势、口碑服务。诸如宏观政策、行业趋势及个体案例的分析等等
4、基于传统行业数据做风控
人行征信、工商、税务、房管、法院、公安、金融机构、车管所、电信、公共事业(水电煤)等传统行业数据。
5、线下实地尽职调查数据
包括自建风控团队做线下尽职调查模式以及与小贷公司、典当、第三方信用管理公司等传统线下企业合作做风控的模式。
虽然貌似与大数据无关,但线下风控数据也是大数据风控的重要数据来源和手段。
全部评论